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The continuum solvation model COSMO and its extension beyond the dielectric approximation (COSMO-
RS) have been carefully parametrized in order to optimally reproduce 642 data points for a variety of properties,
i.e.,∆G of hydration, vapor pressure, and the partition coefficients for octanol/water, benzene/water, hexane/
water, and diethyl ether/water. Two hundred seventeen small to medium sized neutral molecules, covering
most of the chemical functionality of the elements H, C, N, O, and Cl, have been considered. An overall
accuracy of 0.4 (rms) kcal/mol for chemical potential differences, corresponding to a factor of 2 in the
equilibrium constants under consideration, has been achieved. This was using only a single radius and one
dispersion constant per element and a total number of eight COSMO-RS inherent parameters. Most of these
parameters were close to their theoretical estimate. The optimized cavity radii agreed well with the widely
accepted rule of 120% of van der Waals radii. The whole parametrization was based upon density functional
calculations using DMol/COSMO. As a result of this sound parametrization, we are now able to calculate
almost any chemical equilibrium in liquid/liquid and vapor/liquid systems up to an accuracy of a factor 2
without the need of any additional experimental data for solutes or solvents. This opens a wide range of
applications in physical chemistry and chemical engineering.

1. Introduction

Chemical equilibria between different liquid phases, or
between liquids and vapors, control almost all biological and
industrial chemistry. Therefore, understanding and, even more
importantly, predicting such equilibria is of tremendous impor-
tance for the control and optimization of chemical products and
processes.

Dielectric continuum solvation models1,2 (CSMs) like PCM3

or COSMO4 have turned out to be elegant and efficient methods
for the inclusion of solvent effects in quantum chemical
calculations. At costs comparable to gas-phase calculations,
they are capable of giving a surprisingly good description of
the properties and energetics of molecules in various solvents,
especially in water. Parametrizations of such models have been
reported5 that allow for the calculation of∆Ghydr with an
accuracy of about 0.5 kcal/mol, which corresponds to an
uncertainty of a factor 2.3 for the associated equilibrium
constant, i.e., for Henry’s law constant.

Despite the considerable success of the dielectric CSMs, they
are hardly justifiable from a theoretical point of view. This is
because the electric fields on the molecular surfaces of fairly
polar solutes are so strong that the major part of the solvent
polarizability, i.e., the reorientation of static dipoles, no longer
behaves linearly, as it does in the macroscopic limit, but it is
almost at saturation. Although the solvent water appears to
behave almost linear up to surprisingly strong electric fields,
there cannot be any doubt that dielectric theory does not account
for this situation in general and that, even for water, major
deviations from linearity occur6-8 (also see Appendix 1).
Starting from this insight, one of us (A.K.) has proposed a novel
and very fruitful concept called COSMO-RS9 (conductor-like
screening model for real solvents), which avoids the questionable
dielectric approach. This theory takes the ideally screened
molecules as a starting point for the description of molecules

in solution. The deviations from ideal screening, which
unavoidably occur in any solvent, are described as pairwise
misfit interactions of the ideal screening charges on contacting
parts of the molecules in the fluid. A detailed description of
the COSMO-RS concept will be given in section 3. This
concept describes solvent and solute on the same footing, i.e.,
starting from COSMO calculations for all molecules appearing
in the system under consideration. It finally leads to the fact
that the solvent water has the unique ability to almost ideally
screen a solute due to its broad and well-balanced distribution
of screening charge density on its surface. Thus not only does
COSMO-RS give an answer to the question “why are CSMs
quite successful in the treatment of the solvent water' it even
represents a tremendous generalization of the CSM approach.
This is because it no longer depends on experimental data or
any parametrization for the solvent. Finally, it describes mixed
solvents as well as pure ones. As soon as the COSMO
calculations are available, it efficiently enables the calculation
of the chemical potential of almost any solute in almost any
solvent. Thus it is capable of treating almost the entire
equilibrium thermodynamics of fluid systems and should
become a powerful alternative to fragment-based methods like
UNIFAC.10

In this article we will describe a careful and sound optimiza-
tion of the relatively few parameters within COSMO-RS. Due
to the much broader range of properties accessible by COSMO-
RS compared to usual CSMs, a large data set was available for
the optimization. In order to obtain reliable electrostatic
potentials, we based the optimization on density functional
theory (DFT), using the program DMol.11,12 DFT calculations
yield considerably more reliable molecular potentials than the
semiempirical methods, which have been used within the
program MOPAC13,14 in the original COSMO and COSMO-
RS papers. The optimization of the final 18 parameters turned
out as rather sophisticated. This was partly due to the strongly
nonlinear behavior of the problem, which yields multiple† Present address: University of Zu¨rich, Switzerland.
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minima, and partly due to the appearing need for some
conceptual improvements of the DMol/COSMO15 implementa-
tion. These improvements involved a correction for outlying
charges16 and an improvement of the cavity construction, which
will be described in section 2. Nevertheless, we obtained a
consistent and satisfactory parametrization, which allows for
the calculation of chemical potential differences with an
accuracy of about 0.4 kcal/mol. This corresponds to an
uncertainty factor of 2 in the associated equilibrium constants.

In order to present a complete picture of the refined COSMO-
RS method, we first present a survey of COSMO and its
implementation in DMol (section 2), a slightly modified
rederivation of the COSMO-RS theory (section 3), and a
description of the data set and of the optimization procedure
(section 4). Results and discussion will be presented in section
5. A summary and an outlook are given in section 6. Finally,
the full concept of COSMO-RS is summarized as a recipe in
Appendix 2. We are aware that sections 2 and 3 involve some
redundance with earlier papers; however we make a substantial
presentation to aid understanding of the method and its
refinements that are described in this paper.

2. COSMO and Its DMol Implementation

The basic idea of COSMO, compared to other CSMs, is the
use of the boundary condition for the total potential

for the calculation of the screening chargesq* appearing on
the cavity of a soluteX, when embedded in a conductor, and to
scale these charges by a factor

to approximately yield the screening chargesq at a finite
dielectric constantε. This replaces the direct use of the
corresponding, but more complicated and numerically less
stable, dielectric boundary condition for the electric field:

In these equationsq andq* denote the sets of screening charges
that appear on the surface segments of a sufficiently fine
discretization of the cavity surface.σ is the corresponding local
screening charge density on one of these segments, andn
denotes the outward normal vector of this segment. With the
advantage of simplicity and numerical stability, the COSMO
approximation has proven to be sufficiently close (i.e., within
about 10%) to the exact results as resulting from eq 3 at the
lower end of dielectric constants of solvents (ε ≈ 2), while it
asymptotically coincides with the dielectric results at high
dielectric constants, being safely within 0.5% error at the
dielectric constant of water (ε ≈ 80).

As mentioned above, we do not consider the dielectric model
to be relevant for the description of the screening behavior of
solvents on a molecular scale. In the following, COSMO will
exclusively be used for the self-consistent calculation of
geometries, energies, and screening charge densities of mol-
ecules at their ideally screened state, i.e., withf(ε) ) 1. At
this state COSMO is by definition exact, and although they
should asymptotically be able to yield identical results, the truely
dielectric CSMs such as PCM are evidently less suited for this
task.

As described in the original COSMO paper,4 a molecular
shaped, van der Waals type cavity is constructed for each solute.
The density of the basis grid is kept at its default of 1082 points
per unit sphere, but compared to the original MOPAC imple-
mentation a slightly improved, i.e., slightly more homogeneous,
grid is used. For the segment construction, a density of NSPA
) 92, which means approximately 92 segments per unit sphere,
is used. This turned out to be sufficiently fine to keep the
discretization error safely below the final uncertainty of the
method.

During the parametrization process of COSMO-RS, a closure
of the originally open parts of the surface along the intersection
lines of atomic spheres turned out to be useful. This avoids
artificially large screening charge densities on small and isolated
surface fragments, which otherwise appeared in rare but
important cases, e.g., for ethers and amines. Thus a straight-
forward algorithm has been developed and implemented, which
smoothly closes the originally open regions by sets of triangles.
Thereby the total number of segmentsm increases by ap-
proximately 50%. The resulting increase of the costs of the
COSMO algorithm, which partly scales withm3, is not critical
in combination with density functional calculations in the current
DMol implementation. Details of the cavity closure will be
published elsewhere. It should be pointed out here that the
energetic implications of this closure turned out to be almost
negligible, i.e., within 2% for most molecules. But the screening
charge densities now are free of artifacts. Thus the open cavity
used in the original COSMO is a reliable, time-saving ap-
proximation as long as screening densities are not explicitly
required.

In order to avoid, as much as possible, interferences with
insufficiencies of the underlying quantum chemical method, we
decided to use a density functional method (DFT). DFT is
known to be able to yield ground-state properties, especially
ground-state charge distributions, i.e., densities, as reliable as
Hartree-Fock (HF) calculations with higher order correlation
corrections, but at much lower costs. The actual code used is
DMol,11,12,15 which has the additional advantage of using
numerical atomic basis sets. These, even at the default level,
have sufficiently good tails to reliably reproduce quantities such
as dipole moments and polarizabilities. These properties are
of crucial importance for any solvation calculation. As a
validation of the suitability of DMol, gas-phase dipole moments
for a representative set of 64 molecules composed of the
elements H, C, and O have been calculated using the semiem-
pirical Hamiltonian AM1,17 density functional theory (DMol:
SVWN18/DNP and BPW9119-21/DNP; Gaussian94:22 BP8619,23/
6-31G(d), BP86/SVP,24,25 and B3LYP26,27/6-311G(d)), and ab
initio Hartree-Fock methods (Gausssian94: HF/6-31G(d), HF/
6-311G(d,p), and MP2/6-31G(d)). All calculations were single-
point calculations using DMol:BPW91/DNP optimized geom-
etries. The resulting analysis, regarding the accuracy of these
methods, is presented in Table 1.

As soon as reasonably good basis sets are chosen, the different
DFT methods, as well as MP2 calculations, yield good agree-
ment with experimental dipole moments, with a standard
deviation of about 0.15 D. The slope of the best regression
line for these methods is almost identical to unity. It should
be noted that some of the major deviations are common to all
of these methods. We take this as an indication that a
considerable part of the error may arise from conformational
averaging in the experimental data and/or from experimental
errors. Thus we may conclude that an accuracy of about 0.1 D
can be achieved with any of the mentioned methods. It is

0 ) Φtot ) ΦX + Φ(q*) (1)

f(ε) ) ε - 1
ε + 0.5

(2)

4πσ ) Etotn ) (EX + E(q))n (3)
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remarkable that even the semiempirical AM1 method yields the
right slope and almost the same accuracy as the DFT and MP2
methods on this data set, which contains only the three elements
C, H, and O. Nevertheless, AM1, as well as most other
semiempirical Hamiltonians, miscalculates the dipole moments
of the compounds containing nitro or cyano groups by about
0.4 D. Thus they are less suited for general use. HF dipole
moments are worse on our data set, but they can be brought
into the same range of accuracy as the DFT methods by a scaling
factor of 0.8. Nevertheless, the introduction of a scaling factor
or alternatively the correction of the systematically overestimated
dipole moments by larger cavity radii in CSM calculations
would result in serious conceptional problems as soon as other
multipole contributions, such as monopoles or quadrupoles,
become important. Thus, the use of uncorrelated HF methods
in CSM is not recommended. The choice of the DFT functional
is of minor importance. Altogether, our validation clearly shows
that DMol with the BPW91 functional yields reliable densities,
and it should be a sound basis for the optimization of a solvation
model. Nevertheless, at least in one case (cyclohexanone) we
have to realize a substantial overestimation of the dipole moment
by DMol, and as a result, this compound turns out to be one of
the few larger outliers in our final results.

The use of any ab initio or DFT code inevitably introduces
an additional complication into the concept of CSMs: the
existence of some small part of the electronic density that is
located outside of the cavity. As a part of the refinement and
parametrization project, the problem of this outlying charge has
been carefully analyzed by two of the authors.12 It turned out
that COSMO is considerably less sensitive to outlying charges
than the true dielectric approach. Nevertheless, at reasonable
cavity radii the outlying charge error is up to 25% for anions
and neutral compounds, while it is much smaller for cations.
As a result of our investigation, we have developed and
implemented a rigorous algorithm for the removal of such
outlying charge error by the introduction of an auxiliary cavity
lying approximately 1 Å further outside the main cavity.
Energies as well as screening charges now are reliably corrected
for outlying charge effects. Considering the magnitude of the
effect and its strong radii dependence, it is evident that any radii
optimization without such a rigorous outlying charge correction
must be subject to serious artifacts.

The gas-phase reference energies for all the structures of the
data set were obtained from both S-VWN and BPW91 gas-
phase optimizations applying the DNP basis of DMol. All
structures were then reoptimized in a continuum conductor, i.e.,
with COSMO andf(ε) ) 1, using NSPA) 92, the closed cavity
option, and the outlying charge correction. Structures for which
the minimum conformation in solution differs from that of the

gas phase were removed from the data set. Such structures,
although in principle treatable by COSMO-RS, are less suited
for the parametrization. For all other compounds the geometric
changes generally were small.

The resulting ideal net screening energy gains

of all moleculesX are highly correlated with the bare screening
energiesEdiel

X . The latter is called dielectric energy in the
COSMO nomenclature, and it is defined as half of the
electrostatic interaction energies of the ideally screened and self-
consistently polarized solutes with their screening charges:

Heresν andσν denote the area and the ideal screening charge
density on a segmentν, respectively.Ediel

X and∆X are remark-
ably well correlated (r2 ) 0.99) with a slope of 0.80.

The performance of the DMol/COSMO calculations is
comparable to that of gas-phase calculations. For single-point
calculations the COSMO overhead in average is about 10%,
while for geometry optimization with COSMO convergence is
somewhat worse due to small inaccuracies in the gradients.

3. Basic Theory and Refinements of COSMO-RS

3.1. Concept of Misfit Relative to the Ideally Screened
State. As discussed in the Introduction, the macroscopic
dielectric theory is untenable as an explanation for the success
of CSMs. A surprising, and extremely fruitful, explanation
arises from the following consideration of initially ideally
screened molecules: Imagine a snapshot of an ensemble of
molecules in a condensed medium as schematically illustrated
in Figure 1. All molecules are touching their neighbors at
distances corresponding to the vdW radii of atoms. Now let
us divide the entire volume of the system into molecular cavities
which are defined as the union of all those points that have a
smaller relative distance to an atom of the molecule under
consideration than to other molecules. Here the relative distance
is defined as the ratio of distance and vdW radius of the entire
atom. This construction, yielding polyhedral cavities with
slightly curved faces, is schematically illustrated in Figure 1.
Since the closest points of such cavities are about a vdW radius
away from the nearest atom, the mean distance of the cavity is
somewhat larger. A detailed analysis yields that it corresponds
to about 120% of the vdW radii. Because in a fluid the position
of neighbor molecules fluctuates in time, the average molecular
cavity of a solute is not such a pseudo-polyhedron, but it is
considerably smeared out and it corresponds to something like
a solvent-accessible surface constructed with vdW radii in-
creased by about 20%, i.e., typical cavities as used in CSMs.
As a consequence of the above construction, for each individual

TABLE 1: Accuracy of Dipole Moments Calculated with
Different Quantum Chemical Methods for 64 Compounds of
Elements H, C, and O

method program basis set
rms

unscaled
rms

scaled slope

DFT
S-VWN18 DMol11,12,15 DNP 0.1649 0.1585 1.0200
BPW9119-21 DMol DNP 0.1380 0.1300 1.0228
BP8619,23 Gaussian9422 6-31G(d) 0.1500 0.1483 0.9755
BP86 Gaussian94 SVP24,25 0.1374 0.1379 0.9927
B3LYP20,21 Gaussian94 6-31G(d) 0.1479 0.1447 1.0124

ab initio
HF Gaussian94 6-31G(d) 0.3293 0.1682 1.1630
HF Gaussian94 6-311G(d,p) 0.3137 0.1401 1.1648
MP2 Gaussian94 6-31G(d) 0.1953 0.1919 1.0124

semiempirical
AM1 Gaussian94 0.1902 0.1909 0.9769

Figure 1. Schematic construction of molecular cavities.
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snapshot the set of polyhedra is space filling. Hence the
volumes of the averaged cavities must be space filling as well;
that is, they have volumes close to the molecular volumes as
derived from the densities.

Now let us make an auxiliary assumption that has nothing to
do with reality but that is the key for the following steps. We
assume that all of the cavity surfaces are perfect, grounded con-
ductors. Each molecule finds itself in a situation as described
by the COSMO model at infinite dielectric constant, i.e., being
enclosed in a conducting cavity of about 120% of the vdW radii.
Using the averaged cavity for all molecules of the same species
instead of each specific one, the energy of such molecules as
well as the screening charges appearing on the cavities are quite
well evaluated by a standard COSMO calculation. Thus we
have an efficient way to calculate the total energy of this
artificial ensemble of molecules, which are seperated by
conducting interfaces, by just performing a COSMO calculation
for each different type of molecule in the ensemble.

In order to get back to the real state of the condensed medium,
we have to get rid of the conductor again. As a first step, let
us consider the screening charges as well as the molecular polar-
izations as frozen in their ideally screened state. This does not
change anything for the moment. We now remove, one after the
other, small pieces of surface, each having an areaaeff, which is
something like the effective contact area of atoms. Each of these
surface patches is carrying a specific screening charge density

whereσ andσ′ are the local screening charge densities of the
two molecules sharing the surface patch under consideration.
Obviously, if σ is the negative equivalent ofσ′, there is no
screening charge density left and the conductor can be removed
without changing the situation. The two neighbors screen each
other on such a part of the contact surface as well as the
conductor did before. In the general case of nonvanishingσres

we have to prepare a suitable piece of surface, having the
negative of the residual screening charge density, and place it
at the position of the patch. Then it just cancels the residual
screening charge density of that patch, and the situation is
equivalent to having no conductor on that piece of contact
surface. Having compensated the residual screening charge
density of all surface patches in this way, the energy of the
system is composed of four contributions: (a) the energy of
the ideally screened system as considered before; (b) the
interaction energy of the compensation patches with the ideally
screened system; (c) the interaction energy of the compensation
patches with each other; (d) the sum of the self-energies of the
compensation patches. Since the electrostatic potential of the
ideally screened system on the cavity is zero by definition, the
contribution (b) is zero. Under the assumption that the residual
charge densities on the patches are not correlated, contribution
(c) should also be zero due to the random sign of the different
summands. Thus the total energy is given by energy of the
ideally screened system plus the sum of the self-energies of the
compensation patches, each of which is positive and given by

with

Since this energy results from the misfit of the contacting ideal

screening charge densities, in the following we will call it misfit
energy. The constantR is easily derived from simple electro-
statics.4,9

Now we have removed all conductor screening charges from
the system, and the situation is closer to reality, again. But the
polarization of the molecules so far remains frozen in the state
of ideal screening, although the electrostatic situation has
changed meanwhile due to the removal of the residual screening
charges, i.e., the addition of the compensation patches. In reality
the molecules will respond to this change by their electronic
polarizability. This results in a reduction of the misfit energy.
Since the overall electronic polarizability is well represented
by a homogeneous dielectric medium ofε ) n2 ≈ 2, wheren
is the refraction index of the solvent, the reduction of the misfit
energy approximately corresponds to a factor

where the dielectric scaling factor of COSMO has been applied.
This factor will be subsumed within the misfit energy constant
R, which we further on callR′. Thus we end up with the result
that the energy of an ensemble of molecules in the condensed
state is quite well approximated by the sum of the energies of
all molecules in their ideally screened state plus the sum of all
misfit energies resulting from contacts of surface patches:

Here the indicesX and ν denote the molecules and surface
patches, respectively, andσν1 andσν2 are the two ideal screening
charge densities contributing to patchν. Equation 10 is
remarkable in that the electrostatic interaction of the molecules
in the ensemble, including polarization, is expressed as a simple
summation over the contact surface. If the molecule in vacuum
is taken as reference point, the energyE ideal

X is composed of the
net electrostatic energy gain∆X of the molecule in the transition
from vacuum to the ideal conductor, including back-polarization
and eventual contributions from geometry relaxation, and a
dispersion termγk Ak

X, where the γk are element-specific
constants and theAk

X are the corresponding portions of the
surface area. Thus all input for eq 10 is available from the
initial COSMO calculation with the exception of the exact value
of the effective contact areaaeff and the polarization factorfpol,
both of which are subsumed inR′. These parameters, together
with the dispersion constantγ, have to be finally fixed by fitting
to experimental data.

The screening charge densitiesσν, which appear in the above
consideration, here and further on are understood as mean values
over surface patches. They can be derived from the COSMO
output by averaging of the original ideal screening charge
densitiesσν* over a region of radiusrav. For this task we have
employed the following averaging algorithm:

Heredµν is the distance of segmentsµ andν, andrµ is the mean
radius of segmentµ, i.e.,rµ

2 ) sµ/π. This averaging procedure

σres) σ + σ′ (6)

Emisfit(σ,σ′) ) R
2

(σ + σ′)2 (7)

R ) 0.3
ε0

aeff
3/2 (8)

fpol ) 1 - f (ε)n2) ) 1 -
(n2 - 1)

(n2 + 1/2)
≈ 0.6 (9)

Econdensed
tot ) ∑

X

Eideal
X +

R′

2
∑

ν

(σν1 + σν2)
2 (10)

σν ) ∑
µ

σ*µ
rµ

2rav
2

rµ
2 + rav

2
exp{-

dµν
2

rµ
2 + rav

2}/
∑

µ

rµ
2rav

2

rµ
2 + rav

2
exp{-

dµν
2

rµ
2 + rav

2} (11)
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is necessary because we have assumed constant charge density
on each surface patch. Ideally we would expectrav to be equal
to the radiusreff corresponding to the effective contact areaaeff

of the independent surface patches, butsfor reasons we could
not identify yetsit turned out that an independent optimization
of both parameters yields a considerable improvement of the
fit, with rav being about a factor 3 smaller thanreff. As long as
rav is smaller than the correlation length of the screening charge
density on the cavity surfaces, the effect of this averaging
process is rather small. Nevertheless, there is a small energetic
shift from the original ideally screened state to the new averaged
ideally screened state. Since we want to take the averaged ideal-
ly screened state as a starting point for further considerations,
we redefine the net ideal electrostatic screening energy as

This energy is plotted versus the corresponding averaging
corrected dielectric energyE′Xdiel (see second term of the right
side of eq 12) in Figure 2. Like their original correspondences,
both quantities are highly correlated (r2 ) 0.996), and the
regression constant is 0.8. Starting from the self-consistent
ideally screened state of soluteX, we would have to raise the
energy - E′Xdiel for the transfer ofX into vacuum if the polariza-
tion of X would be frozen. Allowing for electronic relaxation
of the solute, this transfer energy would reduce to-∆′X.

Since in this case only the solute is polarizable, while its
environment, i.e., the vacuum, is not, the ratio of∆′X and
E′Xdiel should correspond tofpol

1/2. Thus we get the estimatefpol

≈ 0.82 ) 0.64 from this consideration, being rather compatible
with the previous estimate offpol ≈ 0.6 in eq 9.

Before we procede with the derivation of the final COSMO-
RS formulas we should make the following consistency
consideration for a consolidation of the presently achieved
status: In view of COSMO-RS a solute embedded in a virtual
ensemble of nonpolar and nonpolarizable molecules should be
electrostatically equivalent to a molecule in the vacuum. Since

in such an ensemble the only nonvanishing screening charges
are those of the solute, the residual screening charges are
identical to the solute screening charges, and the total electro-
static energy of the electronically frozen solute in vacuum
relative to its ideally screened state must be given by

Apparently this should be just the negative of the dielectric
energyE′Xdiel. Since the latter is linearly related to the net ideal
screening energy∆′X (vide infra), we expect a strong correlation
between the sum in eq 13, which in the limit of small segment
areassν is the surface integral of the squared screening charge
density, and∆′X. Indeed, this correlation is crucial for the entire
COSMO-RS method. Both quantities are considerably cor-
related (r2 ) 0.985, see Figure 2), but the standard deviation
still is about 0.6 kcal/mol, which is more than the anticipated
accuracy of the COSMO-RS method. There is an obvious
systematics in the residuals:∆′X is overestimated for compounds
having large exposed areas of high polarity, like carbonyls or
nitriles, while it is too low for compounds with small polar hot
spots on the surface, as they typically appear on sp3-oxygen or
sp3-nitrogen atoms. The reason for this is the high correlation
of the screening charge densities over the relatively large surface
of the sp2-oxygen, while sp3-oxygens usually have much smaller
solvent-accessible surfaces and hence show less correlation in
the screening charge densities. Such correlation contradicts the
preconditions made in the derivation of COSMO-RS. Thus, a
better description of the dielectric energy should be achievable
if correlation is taken into account to some degree. This can
be done by using a second screening charge densityσν°, which
is derived from the original screening charge densitiesσ*ν by
averaging over an area of radius 2rav instead ofrav. Although
the σν and σν° are quite correlated, we can construct an
independent descriptorσ ′′ν from σ ′ν by orthogonalizing it over
the entire data set, yielding

σν
⊥ now is a descriptor for the correlation between the screening

charge density on the segmentν with its surrounding. Hence
the energy of each screening charge densityσν now should be
corrected for the interaction with its surrounding, and we expect
a relationship as expressed in eq 15 instead of eq 13. The

optimal value of fcorr can easily be determined by bilinear
regression of∆′X with respect to the two sums on the right-
hand side of eq 15. Obviously the exact value offcorr depends
on the averaging radiusrav, but in the range of the final optimum
of rav ) 0.5 Å we gotfcorr ) 2.4. The total slope, i.e.,-1/
2Rfpol

1/2, comes out as 1110 kcal/mol Å2/e2. By the introduction
of this screening charge correlation correction the correlation
coefficient improves tor2 ) 0.996 (see Figure 2), and the
standard deviation decreases to 0.3 kcal/mol, being within the
anticipated accuracy.

3.2. Statistical Thermodynamics and Chemical Potentials.
Although eq 10 is a considerable simplification compared to
the standard evaluation of the energy of an ensemble of

Figure 2. Quality of the fit of the ideal screening energy∆′X (in kcal/
mol) by different descriptors: (a)∆′Xfitted ) 0.8E′Xdiel (triangles, r2 )
0.995), (b) fit according to eq 13 (small crosses,r2 ) 0.985), (c) fit
according to eq 15 (filled circles,r2 ) 0.995).

∆′X ) ∆X + 0.8(E′Xdiel - Ediel
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ν
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Xσ*ν (12)
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R

2
∑
ν∈X

sνσν
2 = -E′Xdiel = -fpol

-1/2∆′X (13)

σν
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∆′X = -
R

2
fpol
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ν∈X

sνσν(σν + fcorrσν
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-
R

2
fpol

1/2[∑
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sνσν
2 + fcorr∑

ν∈X

sνσνσν
⊥] (15)
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molecules, it is of limited use, since it requires the knowledge
of all the neighborhood relations in the ensemble, i.e., the full
information about the coordination of the molecules. This
usually is known for molecules in crystals, and thus eq 10 may
be an interesting way for the expression of interaction energies
in organic crystals. But in the case of liquids or other disordered
systems, which are our primary focus here, this information is
not easily available. Even more, these neighborhoods are
rapidly changing in time. An appropriate statistical average
could only be generated by demanding thermodynamic sampling
of the entire ensemble, but such would make most calculations
unacceptably expensive.

In order to achieve an enormous reduction of the complexity
of the problem, we now introduce an initially quite daring
approximation, which in the end turns out to be rather accurate
and extremely fruitful. Realizing that in eq 10 not the full
geometric information is required but only the information on
the neighborhood of screening charge densities, we may virtually
cut all cavities into their effective contact segments and postulate
that the statistical averaging can be done for the resulting
ensemble of separated surface patches, each carrying its ideal
screening charge density as known from the COSMO calcula-
tions. Let us assume that these patches are thermodynamically
independent entities with the only boundary condition that they
have to form pairs in order to represent the situation in a
condensed medium, having almost no free surface in the bulk.
Thus our initial ensemble of molecules is replaced by the
corresponding ensemble of pairwise interacting surface patches.
Obviously all properties of such an ensemble must be a function
of the composition of the ensemble, i.e., of the amount of
patches or surface area having the same properties. Since so
far the screening charge densityσ is the only property of the
patches, the ensemble is sufficiently characterized by the
distribution of the patches with respect toσ. We call this
distribution aσ-profile of the ensemble and abbreviate it as
pS(σ), where the lower index S denotes the ensemble, or the
solvent. All σ-profiles are assumed to be normalized to one
molecule. Apparently theσ-profile of an ensemble of molecules
is composed of theσ-profiles of its componentsXi:

Here thexi denote the molar fractions of the different compo-
nents, andpX(σ) is the σ-profile of a single moleculeX.
Obviously, for pure solvents consisting of a single component
the solventσ-profile pS(σ) is identical with theσ-profile of a
single solvent moleculepX(σ). Nevertheless, it is of great
practical importance thatσ-profiles of mixed fluids are easily
derived from theσ-profiles of the components. A fewσ-profiles
of representative solvents are shown in Figure 3.

After these considerations we are now ready to consider the
statistical thermodynamics of the ensemble of surface patches
characterized by aσ-profile pS(σ). The chemical potential
µ′S(σ) of an additional patch with charge densityσ in one mole
of patches of this ensemble is exactly given by the implicit
equation

We later call the functionµ′S(σ) the σ-potential of the solvent

S. In eq 17p′S(σ) denotes the normalizedσ-profile, i.e.,pS(σ)/
AX, andE(σ,σ′) is the interaction energy of the patches with
screening charge densitiesσ and σ′, respectively. Here we
assume thatE(σ,σ′) is given by the misfit energy as expressed
in eq 7, except thatR is replaced byR′. The derivation of this
central equation is somewhat sophisticated, and we refer the
interested reader to the original COSMO-RS article.9 Using
eq 17, theσ-potential µ′S(σ) is easily iterated to self-consis-
tency, starting from the initial guessµ′S(σ) ) 0 in the integrand
and updating it iteratively by new values yielded from integra-
tion. The whole procedure takes milliseconds on modern
computers. We may conclude that theσ-potential µ′S(σ),
which parametrically depends on the temperatureT, is almost
exactly available from the correspondingσ-profile pS(σ) at
negligible costs. Theσ-potential is the key to all interesting
thermodynamical properties of the solvent S. It tells us how
much the solvent likes additional surface with screening charge
densityσ, i.e. surface of certain polarity. It includes the free
energy necessary to remove the patches of the solvent molecules
from their former partners, and it automatically covers cavitation
energy as well.

For the optimization of the parameters it is useful to express
the chemical potential of a patch per unit area in energy units
of kT, i.e., µ̃S(σ) ) â-1µ′S(σ) with â ) kT/aeff. Using the cor-
responding definitions for the interaction energy, i.e.,Ẽ(σ,σ′)
) â-1E(σ,σ′), eq 17 simplifies to

For any moleculeX the standard chemical potential at unimolar
concentration ofX in solvent S, expressed relative to the ideally
screened state, can now be calculated by integration of the
σ-potential of the solvent weighted by theσ-profile of the solute.
Thus we get

with

From the exact treatment of this ensemble we would find the
factor λ to be the number of effective contact patches of the

Figure 3. Four representativeσ-profiles.

pS(σ) )

∑
i

xi p
Xi(σ)

∑
i

xi

(16)

µ′S(σ) ) -kT ln[∫dσ′p′S(σ′) exp{(-E(σ,σ′) + µ′S(σ′))/kT}]
(17)

µ̃S(σ) ) -ln[∫dσ′ p′S(σ′) exp{- Ẽ(σ,σ′) + µ̃S(σ′)}] (18)

µ*S
X ) ∫dσ pX(σ) µ′S(σ) - λkT ln AS ) âµ̃S

X - λkT ln AS

(19)

µ̃S
X ) ∫dσ pX(σ) µ̃S(σ) (20)
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soluteX, i.e.,AX/aeff. But, as discussed ref 9, this is an artifact
from considering each of these patches as an independent entity.
Insteadλ ) 1 appears to be much more reasonable for coupled
sets of patches. There are some additional influences of the
molecular size of the solvent on the chemical potential of solutes
known as combinatorial factors in the terminology of the
chemical engineers,10 which cannot be expected to be adequately
represented within this simplified model ensemble of decoupled
surface patches, but which should be roughly proportional to
kT ln Ys, whereYs is some size-dependent molecular descriptor
like the surface areaAs. Thus, we consider the factorλ to be
adjustable but general during the parametrization of COSMO-
RS.

Apparently the standard chemical potential is hypothetical
in almost any real case, since usually the real molar concentra-
tion x of the soluteX in the solvent S is smaller than 1. Thus
in order to get the real chemical potential ofX in S, the standard
chemical potential has to be corrected for the true concentration
by addition of-kT ln x.

With respect to the ideally screened state the standard
chemical potential of a molecule in the gas phase at a partial
pressure of 1 bar is given by

where the first term is the negative of the ideal screening energy.
The second term, in which the indexk refers to the different
elements occurring in soluteX, and withAk

X being the exposed
surface area of elementk in moleculeX, represents the dispersion
or van der Waals energy gain of the solute going along the
transfer from gas phase to a condensed phase. Although being
assumed to arise mainly from dispersion, other free energy
contributions, which are correlated with the molecular size and
thus with surface area, may be involved in this term as well.
Such contribution might be the solvent-induced change in
vibrational free energy, which is not accounted for otherwise.
The nature of the third term, in whichnra

X is the number of ring
atoms in moleculeX, is not yet understood, but this ring
correction is highly significant. It consistently removes the
problems with ring compounds, as they have been reported by
Marten et al.7 The last term accounts for the entropy of the
molecule in the gas phase and for the adjustment to the special
reference state chosen for the gas phase.

In summary, eqs 19 and 21 allow for the general description
of chemical equilibria between two liquid phases or between a
liquid and the gas phase, without the need of any experimental
data, neither for the solute nor for the solvent. Only a few
adjustable parameters have to be determined for this really
general task, which are element-specificγk and the four
parametersâ, λ, ω, andη explicitly appearing in these equations,
as well as the parameters implicitly used in the COSMO-RS
algorithm, i.e., the cavity radii, which we assume to be element
specific, the optimal value for the averaging radiusrav, and the
exact value of the polarizability factorfpol.

3.3. Generalization for Hydrogen Bonding. Hydrogen
bonds are important interactions in condensed media. To some
degree hydrogen bonds are electrostatic interactions between
the strongly positively polar hydrogens of the donor molecule
and the strongly negatively polar parts, i.e., the lone pairs of
the acceptor. This electrostatic part of hydrogen bonding is very
well treated by the COSMO-RS algorithm as derived so far.
But the extra energy gain that arises from the mutual penetration
of the electron densities of the donor and acceptor is not caught
by COSMO-RS so far. During the optimization procedure it

turned out that it is necessary to account for this extra hydrogen-
bonding contribution. In an approximate sense, this can quite
elegantly be introduced in COSMO-RS by simply changing the
interaction energy operatorE(σ,σ′), which presently only covers
the misfit energy. It is reasonable to assume that a hydrogen
bond is formed between a sufficiently polar piece of surface of
the donor and the acceptor, respectively, and that the bond is
stronger the more polar these pieces are. Such behavior can
be described by the following function:

Hereσaccandσdon denote the larger and smaller value ofσ and
σ′, respectively. This energy is zero, unless bothσ-values are
of opposite sign and exceed the thresholdsσhb and -σhb for
acceptors and donors, respectively. The introduction of this
hydrogen bond term reduced the rms of the fit on C, H, O
compounds by a factor 2.

3.4. Generalization to Additional Descriptors. In order
to take advantage of the improvement in the description of the
interaction energies of surface patches by additional descriptors
such as the correlation screening charge densityσ ′′ν, we have to
generalize the above presented one-dimensional COSMO-RS
theory to a multidimensional theory, where the dimensionality
is meant with respect to the number of descriptors per surface
patch. Up to now we have considered only one descriptor for
each surface patch, i.e., the averaged ideal screening charge
densityσ.

The straightforward generalization of the COSMO-RS algo-
rithm to an arbitrary numbern of descriptors considered to be
represented as ann-dimensional vectord and used in the energy
expressionẼ(d,d′) would consist in the extension of the presently
one-dimensional histograms with respect toσ, i.e., of the
σ-profiles, ton-dimensional histograms and the corresponding
replacement of all one-dimensional integrals ton-dimension
integrals with respect tod. But, although still being managable,
this would considerably increase the numerical expense for the
iterative solution of the multidimensional equivalent of eq 18.
It is more efficient to replace then-dimensional integral by an
appropriately weighted sum over all the segments of the
molecules making up the solvent. Thus eq 18 becomes

with sν
i anddν

i being the area and the descriptors of segmentν
of the ith molecular component of the solvent, respectively,xi

being the corresponding molarity and the normalization factor
Wν being defined as

Equation 23 first has to be iterated to self-consistence for the
entire set of segments appearing in the solvent, and the resulting
set ofµ̃S(dν

i ) has to be stored. Then the chemical potential for
any surface patch with descriptorsd as appearing in a solute
can be calculated from eq 23 in a single step, and the equivalent
of eq 20 is easily evaluated for any soluteX:

4. Data Set and Optimization Procedure

The full data set for the radii optimization and parametrization
of COSMO-RS for the elements H, C, N, O, and Cl covers 217

µ ′Xgas) - ∆′X - ∑
k

γk Ak
X - ωnra

X - ηRT (21)

Ehb(σ,σ′) ) chb max[0,σacc- σhb] min[0, σdon + σhb] (22)

µ̃S(d) )

- ln[W-1 ∑
i

xi ∑
ν∈Xi

sν
i exp{-â-1Ẽ(d,dν

i ) + µ̃S(dν
i )}] (23)

WS ) ∑
i

xi ∑
ν∈X

sν
i (24)

µ̃S
X ) ∑

ν∈X

sν µ̃S(dν) (25)
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molecules and altogether about 642 independent data points for
the six properties∆Ghydr, which is equivalent to Henry’s law
constant for the water/air system, vapor pressure, and the
partition coefficients for octanol/water, benzene/water, hexane/
water, and diethyl ether/water. The latter three properties, i.e.,
the partition coefficients hexane/water and benzene/water, and
diethyl ether/water are less well investigated than the first
properties, but altogether about 150 data points are experimen-
tally available.

The compounds have been collected under the aspect of data
availability, especially for∆Ghydr, diversity of chemical func-
tionality, size, and conformational simplicity. A limited mo-
lecular size is required, because each change in the cavity radii
implies new DMol/COSMO calculations for each of the
compounds and because a large number of different radii
combinations in the five-dimensional space of the cavity radii
of the elements had to be tested. Approximately 15 000 DMol/
COSMO calculations have been run throughout the entire
optimization procedure. Although multiple conformers and
solvation-induced conformational changes are treatable by the
COSMO-RS approach, conformational simplicity, i.e., the
existence of a single dominant conformation, which is stable
under solvation apart from minor changes in bond lengths and
angles, considerably simplifies the parametrization process. The
full data set is given as Supporting Information.

Experimental data were taken from different sources, the most
important of which are the Thor database28 for all kinds of
partition coefficients, the CRC29 and D’Ans-Lax30 handbooks,
and a collection of Henry’s law constants by Meylan,31 which
to a large degree are calculated from the ratio of vapor pressure
and water solubility. In some cases the mean value of different
references has been used.

In order to use eqs 19 and 21, we had to convert most of the
experimental data to the appropriate reference systems, that is,
∆Ghydr had to be corrected by 4.28 kcal/mol, which isRT ln-
(number of moles of water in the standard gas-phase molar
volume), for a conversion from 1 bar and 1 mol/mol as reference
state in the gas phase and liquid phase, respectively, to the
common reference states of 1 mol/L in both phases. Distribution
coefficients, which usually are considered as ratios of concentra-
tions in units of mol/L, had to be converted to ratios of
concentrations in mol/mol, i.e., by multiplication with MW1 D2/
MW2 D1, where the MWi and Di denote the molecular weights
and the densities of the involved solvents.

In order to keep the dimensionality of the optimization
problem small and to reduce the expense for a single-radius
point, i.e., a single combination of radii, most of the param-
etrization was done on a reduced data set of H, C, O compounds
(Table 2, Supporting Information). In addition the geometries
of the ideally screened compounds have been updated only a
few times, while for most radii points only single-point
calculations have been performed using geometries from nearby
radii points, since the effect of small radii changes on the
geometries turned out to be negligible. The radii for the other
elements N and Cl were optimized after the radii for H, C, and
O had been fixed. The other COSMO-RS parameters were
finally readjusted based on the entire data set.

Before we present the results of the optimization procedure
in the next section, we would like to discuss some general
aspects we became aware of during the optimization and some
wrong tracks we have followed.

A major part of the time during the optimization process we
spent with the analysis and the proper correction of the outlying
charge error until we finally found the rigorous correction

algorithm described in ref 16. The proper correction of the
outlying charge error is of crucial importance for any radii
optimization in CSMs. The error, which is up to 25% of the
whole solvation energy, exponentially decays just in the relevant
radii region, and hence it influences the final radii optimum.
Since the outlying charge error is very sensitive to the basis
set,32 such optimum is not transferable between different basis
sets.

As proposed in the original COSMO-RS paper, local polar-
izability, i.e. the linear polarization answer of the perfectly
screened solute to a local misfit charge, has been considered as
an additional local descriptor for each patch, in order to replace
the global and general polarization factorfpol in the misfit energy
expression. The gain in accuracy by using local polarizability
as a second descriptor was surprisingly small, and it did not
justify the large additional numerical expense necessary to
calculate the local polarizabilities. A second approach using
element-specific polarizabilities instead of the general one did
not yield a significant improvement of the fit either.

The introduction of the correlation screening charge density
σν

⊥ into the misfit energy expression significantly improved the
standard deviation of the fit by about 5%. For this eq 7 was
replaced by

Taking the value offcorr from the regression with repect to the
dielectric energy, this methodological improvement does not
introduce another adjustable parameter.

In order to remove certain systematic deviations occurring
for alcohols and ethers on the one side and carbonyls on the
other side, we intermediately introduced atom type specific radii,
i.e., different radii for polar and nonpolar hydrogens as well as
for sp2- and sp3-oxygens. For a while this appeared to yield
significant gains in accuracy, especially the differentiation
between two types of hydrogen. Fortunately, in the end we
found a comparably accurate parameter set with only one radius
for each element. Apart from the general advantage of having
less parameters, this is of special importance for the applicability
of the approach to less common situations, in which the
classification of an atom may be less obvious, and to reactions,
during which the atom type may change.

A hydrogen bond term in the energy expression as given by
eq 22 turned out to be highly significant for the C, H, O data
set. The best fit without such a term had about twice the
standard deviation of our final optimum, i.e., 0.8 kcal/mol
instead of 0.4 kcal/mol. It is notable that Marten et al. report
almost the same decrease from 0.8 kcal/mol to 0.4 kcal/mol
standard deviation by addition of first-shell hydrogen-bonding
corrections to their SCRF-GVB8 method. It turned out that the
details of the functional form of the hydrogen bond term in
COSMO-RS are less important, as long as it exhibits the
characteristic behavior of hydrogen bonding, i.e., being almost
zero for nonpolar or moderately polar interactions, but becoming
important for strongly polar surface contacts. Different reason-
able functional forms led to almost identical fit results. We
finally took the simplest of these approaches. Attempts to
introduce an upper bound for the hydrogen bond interaction
did not yield a better fit. Unfortunately this term failed to
adequately describe the acceptor behavior of nitrogen in neutral
amines, especially if these are multiply substituted with methyl,
ethyl, or even more bulky groups. Problems with a correct

Emisfit((σ,σ⊥),(σ′,σ⊥′ )) )
R′
2

(σ + σ⊥)[(σ + σ′) + fcorr(σ
⊥ + σ⊥′)] (26)
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description of amines in CSMs are well-known.8,33 A good
collection and comparison of the results of different methods
on amines is given by Marten et al.8 In our opinion the
problems of COSMO-RS and other CSMs with neutral amines
in protic solvents result from the fact that for these amines the
nitrogen lone pair is to a large degree hidden by the substituents,
if one considers the vdW surface or the COSMO cavity. Only
if a donor comes closer to the nitrogen does the full attractive
potential of the lone pair become perceptible. Therefore the
hydrogen bond approximation of eq 22, which is an estimate
based on the screening charge density, i.e., on the polarity
visable on the COSMO surface, fails in this special situation.
For this reason we dropped all data points involving amines in
water from the data set and took only the vapor pressure into
account. The latter is well described, since hydrogen bonding
does not play an important role in the pure amines due to the
poor donor behavior of amine hydrogens. It should be noted
that the hydrogen bond correction works well for all other
nitrogen compounds.

Out of the six equilibrium constants chosen as representative
goal properties in our parametrization, five of them involve
water as the solvent. On the one hand this represents well the
overwhelming importance of water as a solvent, but on the other
hand the dominance of water in the goal properties may cause
some bias of the parameter set toward an optimal description
of the solvent water, which due to its extraordinarily strong
interactions and high degree of internal structure, is a rather
unusual fluid. In order to remove this bias, we temporarily
allowed for a special description of the solvent water by anmth
order Taylor series approach for theσ-potential of water, i.e.,

instead of using eq 17. In this case eq 19 simplifies to

with Mi
X being theith σ-moment of soluteX, i.e.,

As discussed in the original COSMO-RS paper,M0
X is nothing

else than the molecular surface areaAX, M1
X is the negative

total solute charge and hence zero throughout our parametriza-
tion, since only neutral species were considered, andM2

X is
highly correlated with the screening energy∆X. Due to the
disappearance of the first moment, a Taylor series up to fourth
order corresponds to four additional adjustable parameters in
our model, which can easily be determined in the multilinear
regression part of the fit, if theσ-moments of the solutes are
supplied as descriptors. It turned out that these additional four
parameters did not significantly influence the other parameters,
and the gain in accuracy was less than 3% with respect to the
standard deviation. We take this as proof of the robustness of
the COSMO-RS theory and of the final parameter set. Obvi-
ously, the small improvement of the fit is not sufficient to
permanently keep this exception rule for the solvent water.

Unfortunately we had to remove all data points where water
acts as the solute because∆Ghydr of water is calculated to be
2.3 kcal/mol too low. The reason for this error probably arises
from the fact that, due to the neglect of all steric restraints in
the COSMO-RS approach, there is no problem for a water

molecule to form four hydrogen bonds, while in reality the
formation of four hydrogen bonds per molecule implies a high
degree of order, which goes along with crystallization. In liquid
water on average only a smaller number of hydrogen bonds
can be formed.

5. Results and Discussion

5.1. Results for Parameters.The optimization of the cavity
radii and the other model parameters led to the following
results: The radii are 1.30 Å for H, 2.00 Å for C, 1.72 Å for O,
1.83 Å for N, and 2.05 Å for Cl. Except for hydrogen, these
radii are 13-18% larger than the corresponding van der Waals
radii and thus agree reasonably with the widely accepted “van
der Waals plus 20% rule” for dielectric CSMs.

Let us now consider the parameters needed for the free energy
of transfer from gas phase to the ideally screened condensed
phase, as expressed by eq 21. The dispersion constants come
out asγH ) -0.041,γC ) -0.037,γO ) -0.042,γN ) -0.027,
andγCl ) -0.052 (in kcal/(mol Å2)). These values correspond
to about-1.8 kcal/mol for a water molecule and about-5 kcal/
mol for octane. The dispersion parameters for H, C, and O are
quite close to each other, which initially drove us to the
assumption that a single universal dispersion constant would
be sufficient. But for nitrogen and chlorine the need for
element-specific dispersion constants became obvious.

The exact value of the ring correction coefficientω is -0.21
kcal/mol. For a six-membered ring this corresponds to-1.26
kcal/mol and it reflects the difference in∆Ghydr between hexane
and cyclohexane. As mentioned in section 4 the physical origin
of this contribution still is an open question. From application
to larger ring systems with up to 16 ring atoms we found that
it works well even for rings of such size.

The constantη, which corresponds to the entropy difference
of a molecule between the standard state in gas phase (1 bar)
and in the liquid state (1 mol/mol) comes out to be-9.15, i.e.,
ηkT is -5.4 kcal/mol at room temperature.

The best value for the averaging radiusrav turns out to be
0.5 Å. This is considerably less than the initially assumed value
of about 1 Å, which had been derived from the consideration
of the correlation length of the screening charge density on the
cavity surfaces. But since we have introduced the correlation
correction (see eq 15), we should not be surprised that the
optimal value now is smaller than the correlation length.

The optimal value of the the scaling parameterâ for the
chemical potentials in eq 19 isâ ) kT/aeff ) 0.0832 kcal/(mol
Å2). With kT ) 0.592 kcal/mol at room temperature we thus
haveaeff ) 7.1 Å2, i.e., a radiusreff ) 1.5 Å. Interpretingaeff

as the average statistically independent surface unit, we get about
7 of such units on a water molecule, corresponding quite well
with standard estimates of the number of nearest neighbor
molecules in liquid water. Thus we obtained a plausible result
for aeff, although it has been treated as an adjustable parameter
during the optimization.

For the misfit energy parameterR′ we findR′ ) Rfpol ) 1288
kcal/(mol Å2)/e2. The correlation correction factor isfcorr )
2.4. It should be pointed out that the latter has been derived
from a fit to model inherent data and thus is not a free parameter
of the model. ComparingR′ with the slope of-1360 kcal/
(mol Å2)/e2 from the correlation of the dielectric energy with
the secondσ-moments, which according to eq 13 should be
-R/2, we find fpol ) 0.48, i.e., somewhat smaller but still in
reasonable agreement with our previous estimates offpol ) 0.64
and fpol ) 0.6 (cf. section 3.1), respectively.

µ ′water(σ) ) ∑
i)0

m

µwater
i σi (27)

µ*X
water) ∑

i)0

m

µwater
i M i

X - λkT ln AS (28)

Mi
X ) ∫dσ pX(σ)σi (29)
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The hydrogen bond parameters introduced in eq 21 arechb

) 7400 kcal/(mol Å2)/e2 andσhb ) 0.0082 e/Å2. In order to
check the reliability of this extra hydrogen bond term, we
performed DMol/COSMO calculations for the water dimer. The
total energy gain from the formation of an H-bonded dimer is
-3.84 kcal/mol, while only-1.74 kcal/mol is gained if the bond
distance is fixed at a vdW distance instead of the optimized
distance of 1.7 Å. In the sense of our COSMO-RS treatment
we should interpret the difference of 2.1 kcal/mol as the extra
hydrogen bond energy. Using eq 21 together with the optimized
parameters, we find a value of about 1.9 kcal/mol for the extra
energy of one H-bond of water in the solvent water, which is
in good agreement with the directly calculated value.

Finally, the best value of the parameterλ is 0.14. As
mentioned above, we would have expected a value of 1 from
the consideration that each solute may choose just one partner
surface patch independently, while the choice of the rest is
considerably constrained by neighborhood relations of the
solvent patches. On the other hand, the number of constraints
is smaller in solvents composed of smaller molecules. Therefore
the degeneracy of a solute in such solvents is larger, causing
an opposite trend. Our result ofλ ) 0.14 implies that both
tendencies almost cancel. Within the accuracy of the method
we could as well setλ to zero and hence drop this parameter.
But in order to state that the question of degeneracy, which is
known as the combinatorial factor in activity coefficients in the
nomenclature of chemical engineers,8 has been considered, we
keep it in the formalism. Thus our result corresponds to a
combinatorial factor of

whereAS is the mean surface area of all the components of the
solvent. This expression is relatively simple compared to the
heuristic expressions forγcomb which are routinely used by
chemical engineers. Thus it might be that some improvement
of the COSMO-RS approach will be achieved by a more
sophisticated combinatorial factor. Some indication for the need
for further improvements at this point might be the constant
correction of-0.5 kcal/mol, which we needed to avoid an
average overestimation of the diethyl ether/water partition
coefficients. Nevertheless all other solvents, including the 171
solvents considered in the vapor pressure data by the calculation
of the chemical potential of the molecules in their own fluid,
are well described by our degeneracy term.

5.2. Results for Goal Properties. The finally achieved
agreement between calculated and experimental data for the six
goal properties is presented in Figure 4a-f. The calculated
residuals are plotted against the experimental values. The
corresponding data (about 1300 experimental and calculated
values) are given in Table 2, which has been deposited as
Supporting Information, in order to keep this article reasonably
comprehensive. The overall standard deviation for chemical
potential differences is 0.40 kcal/mol, corresponding to 0.3 log
units or a factor 2 for the corresponding equilibrium constants.
The error is rather homogeneous with respect to the different
goal properties, with a slight increase for the three less well
represented properties, i.e., the hexane/water, benzene/water, and
diethyl ether/water partition coefficients. For these we can
safely assume a larger experimental error, because due to the
small number of data points, we had to accept almost any value
documented in the Thor database28 without being able to check
their reliability.

The standard deviation achieved for the 163 values for∆Ghydr,
which cover a range of 14 kcal/mol, corresponding to 10 log

units for the Henry coefficient, is 0.37 kcal/mol. Apart from
the error of-2.3 kcal/mol for water, which has been discussed
before, all errors are within 1 kcal/mol. The largest negative
error is-0.83 for H2, while the largest positive errors (1 kcal/
mol) occur for dimethylpyridine and methylpyrazine. As
expected,∆Ghydr of cyclohexanone is significantly overestimated
(-0.76 kcal/mol), consistent with the too large dipole moment
calculated by DMol (vide infra).

The 171 vapor pressures, covering about 6 log units, are best
reproduced by the COSMO-RS results. The standard deviation
is 0.32 kcal/mol. Again water is the largest outlier (-1.7 log
units), while the others stay within an error of 1 kcal/mol (0.75
log units). Among these, NH3 has the largest negative deviation,
while two amides are the largest positive outliers.

The 170 data points for the octanol/water partition coefficient
are spread over 7 log units. The standard deviation of the
residuals is 0.41 kcal/mol. All errors are within 0.8 log units
(1.1 kcal/mol), with two ethers, i.e. dipropyl ether and methyl
tert-butyl ether, being the largest positive outliers, while
acetaldehyde is the largest negative one. It is remarkable that
the error for water is only-0.5 log units. This may have to do
with the fact that the octanol phase offers hydrogen bond donors
and acceptors as well. Thus there should be some cancellation
of errors between the two phases.

For the partition coefficient betwen hexane and water we
could collect 68 data points. It should be noted that in order to
increase the data basis we used data for pentane, cyclohexane,
heptane, and octane as well, since the experimental partition
coefficients for these solvent systems turned out to be identical
within about 0.2 log units, i.e., within the experimental error.
The standard error achieved is 0.48 kcal/mol. Here again, water
is the largest outlier. The error is-1.7 log units, as for the

γcomb) (AS/AX)0.14 (30)
Figure 4. Residuals of the six fitted goal properties vs experimental
data: different classes of compounds are marked by different symbols
as given in the legend. The detailed data are presented in Table 2.
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vapor pressure (and for∆Ghydr, respectively). This clearly
demonstrates that the error is caused by hydrogen bonding, while
the other contributions, i.e., electrostatics and dispersion, which
are present in hexane as well, appear to be well described. The
second largest outlier is imidazole, with-1.2 log units. Since
there is only a single experimental value for imidazole in these
alkanes, we tend to ascribe this outlier to an experimental error.
All other results are within 0.7 log units. It should be noted
that the data for this partition coefficient covers more than 10
log units.

Only 30 data points were available for the benzene/water
partition coefficient, for which we achieve a standard deviation
of 0.45 kcal/mol. Again water is the largest outlier (-1.3 log
units), followed by hydrogen peroxide, with-1.1 log units. The
reason for the latter deviation should be similar to that of water.
All other points come out quite well, with the largest positive
outlier being dimethylpyridine, with an error of 0.7 log units.
The range of the benzene/water data covers 8 log units.

For the diethyl ether/water partition coefficient we found 40
data points for our set of compounds. With a standard deviation
of 0.6 kcal/mol this is the worst reproduced goal property,
especially if we take into account that in contrast to all other
properties we added an additional regression constant in this
case, which came out as-0.5 kcal/mol. The error for water is
surprisingly small again (-0.23 log units). This indicates that
there is error cancellation between the solvents diethyl ether
and water with respect to the solute water, although diethyl ether
has no hydrogen bond donors. Hence we may conclude that
the problems with the solute water can be ascribed to its donor
behavior, which is overestimated to some degree. The largest
outlier is hydrogen peroxide, this time with a positive deviation
of 1 log unit. This does not seem very plausible, considering
the negative deviations for water and hydrogen peroxide in all
other partition coefficients. Thus we tend to assume an
experimental error in this case. The other major deviations are
random. Considering the fact that most of the experimantal
data points are single values, some part of the scatter for this
property may arise from experimental uncertainties.

6. Summary and Outlook

By careful parametrization of the COSMO-RS theory, which
takes the ideally screened states of molecules as a starting point
for subsequent solvation calculations, we have achieved a model
that allows for the calculation of the chemical potential of almost
any neutral soluteX. This can be done in almost any organic
solvent without using any experimental data for the solute or
the solvent. An accuracy of about 0.4 kcal/mol can be achieved
if the underlying COSMO calculations for the ideally screened
states are performed using DFT methods.

Only eight general parameters are used. These are an
averaging radiusrav for the screening charge density, an effective
contact areaaeff, the electrostatic interaction coefficientR′, two
hydrogen-bonding parameters, a ring correction, a degeneracy
difference between gas phase and liquid state, and a size
dependence coefficient, as well as two parameters per element,
i.e., the cavity radius and the dispersion coefficient. So far the
elements H, C, O, N, and Cl have been considered. Additional
common elements like F, Br, and I, as well as S and P will be
parametrized soon. The renunciation of atom type specific
parameters makes the presented method generally applicable.

Apart from the removal of the questionable dielectric ap-
proximation for solvents on a molecular scale, the special
advantage of the COSMO-RS approach compared to other
continuum solvation methods is its ability to treat the solvent

on the same footing as the solute. Almost any solvent, even
mixtures, can be handled, and the temperature dependence is
include in a natural way. This allows a wide range of
applications, especially in the area of chemical engineering.

Because the scope of this paper was the parametrization of
the model, we concentrated on a core region out of the much
broader range of applications of COSMO-RS. We only
considered a suite of well-investigated room-temperature equi-
librium parameters between more or less pure solvents for
conformational simple, neutral solutes. Thus several additional
aspects will be subjects of forthcomming papers; these are the
application to mixtures and to varying temperatures, the study
of ionic solutes, the treatment of multiple conformations, and
the consideration of properties that are not directly related to
chemical potentials, such as surface tensions or heats of transfer.

The achieved accuracy of 0.4 kcal/mol is satisfying. For
many properties, this accuracy, which corresponds to deviations
of a factor 2 in the equilibrium constants, is almost within
experimental error. Considering the fact that the inaccuracy in
the quantum chemical calculation of the electrostatics of the
solute, which we found to be about 0.1 D for dipole moments,
causes errors of this magnitude in the ideal screening energy,
no dramatic increase of the accuracy of COSMO-RS can be
expected. Nevertheless, some room is left for further improve-
ments, especially in the heuristic hydrogen bond term, which
presently is an estimate of the gain of hydrogen bond energy
based on the screening charge density on the COSMO surface.
This should benefit from introduction of an auxiliary screening
charge density, which is evaluated on a surface about 0.5 Å
closer to the atoms, i.e., at a distance much more characteristic
for the hydrogen bond contacts. Due to the generalization of
COSMO-RS to multiple descriptors, the inclusion of a third
descriptor into the algorithm is straightforward. We hope to
overcome the problems with amines by such modifications.

Appendix 1: Saturation of Reorientational Polarizability

The saturation of the reorientational polarizability at typical
electric field strengths on the molecular surfaces of polar solutes
can be easily proven by the following consideration for water
as the solute. The static dipole moment of water isµ ) 1.9 D
) 0.4 e Å. The average radius of a water molecule, as derived
from its molecular volume of 30 Å3, is R ) 1.9 Å. Thus, for
the electric field in the direction of the dipole moment we find
a value ofE ) 2µ/R3 ) 0.12 e/Å2. The polarization of a
dielectric medium necessary for an almost perfect compensation
of this field is given byP ) E/(4π) ) 0.010 e/Å2. On the
other hand, the maximum polarization of a medium by perfectly
ordering all of its permanent dipole moments is given byPmax

) µ′/V, whereµ′ is the strength of a permanent dipole andV is
the molecular volume. For water we findPmax ) 0.013 e/Å2.
Thus the solvent water could be able to screen the electric field
of a water molecule almost perfectly by reorientational polar-
izability, but only if this is ordered up to 80% saturation. It is
unlikely that the reorientational polarizability really behaves
linearly up to this degree of saturation. Electric fields stronger
than 0.16 e/Å?, as they occur on molecular surfaces of small
ions, can definitely no longer be efficiently screened by
reorientational polarizability. On the other hand, other relatively
strong dielectrics such as acetone or methanol, which according
to the dielectric theory should be able to screen 89% and 92%,
respectively, of the electric field of a dipolar solute by their
reorientational polarizabilities, have a lower value ofPmax of
0.005 e/Å2. Thus, even with perfect ordering of the static dipole
moments they are only able to screen 50% of the maximum
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field of a water solute by reorientation. Hence, they are
definitely not able to compensate the electric field of a water
molecule by static polarizability as efficiently as they compen-
sate macroscopic electric fields.

Appendix 2: Recipe for a COSMO-RS Calculation

In the following we give a recipe for the calculation of the
chemical potentialµS*

X of a soluteX in a solvent S, which is
composed of a set ofn componentsXi, i ) 1, ...,n.

(1.1) This step is necessary only if any gas-phase-related
property of X is desired: Do a DMol gas-phase geometry
optimization using BPW91/DNP forX.

(1.2) Do a DMol/COSMO geometry optimization using
BPW91/DNP andε ) ∞ (ideal screening) forX. The cavity
radii are given in Table 3. In addition use the parametersRsolv

) RH, NSPA ) 92, and DISEX) 10. Trigger the outlying
cavity correction and use the corrected results for energies and
screening charge densities.

(1.3) Repeat 1.2 for each of the solvent moleculesXi.
(2.1) For each of the moleculesX andXi do the averaging of

the screening charge densities according to eq 11. Userav )
0.5 Å and rav ) 1 Å to get the σν and σ°ν, respectively.
Calculateσν

⊥ asσν
⊥ ) σ°ν - 0.816σν.

(2.2) Only for X and only if gas-phase calculation is done,
calculate the averaging corrected energy difference of gas phase
and ideally screened state∆′X according to eq 12. Calculate
the chemical potential ofX in the gas phase according to eq
21, using the values for the element-specific dispersion paramters
γk as given in Table 3, as well asω ) -0.21 kcal/mol andη
) -9.15.

(3.1) For the entire set of segmentsν occurring in the the set
of solvent componentsXi iterate theµ̃S(dν

i ) to self-consistency
using eqs 23 and 24, starting withµ̃S(dν

i ) ) 0 on the right side
of eq 23. Use 0.001 kcal/mol as a convergence criterion. The
set of descriptorsdν for each segment is given by the two
screening charge densitiesσν andσν

⊥. The energy functional
Ẽ(d,d′) is composed of two contributionsEmisfit (eq 26) withR′
) 1288 kcal/mol Å2/e2 andfcorr ) 2.4 for the electrostatic misfit
and Ehb (eq 22) with chb ) 7400 kcal/mol Å2/e2 and σhb )
0.0082 e/Å2 for hydrogen bonding. The scaling parameter for
Ẽ(d,d′) is â ) kT/aeff ) 0.0832 kcal/(mol Å2).

(3.2) Now theµ̃S(dν) are calculated for all segmentsν of the
soluteX, using theµ̃S(dν

i ) from 3.1) on the right side of eq 23.
(3.3) The chemical potentialµS*

X of the compoundX in the
solvent S can be calculated as

with λ ) 0.14.

Supporting Information Available: Table of experimental
and calculated data for the six goal properties and 217
compounds (3 pages). Ordering information is given on any
current masthead page.
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TABLE 3: Element-Specific Parameters

element
k

cavity radius
Rk [Å]

dispersion constant
γk [kcal/(mol Å2)]

H 1.30 -0.041
C 2.00 -0.037
N 1.83 -0.027
O 1.72 -0.042
Cl 2.05 -0.052

TABLE 4: General COSMO-RS Parameters

symbol value

rav 0.5 Å
a′ 1288 kcal/(mol Å2)/e2

fcorr 2.4
chb 7400 kcal/(mol Å2)/e2

σhb 0.0082 e/Å2

aeff 7.1 Å2

λ 0.14
ω -0.21 kcal/mol
η -9.15

µS*
X ) â∑

ν∈X

sν µ̃S(dν) - λkT ln∑
i

xi A
Xi

Refinement and Parametrization of COSMO-RS J. Phys. Chem. A, Vol. 102, No. 26, 19985085


